10 research outputs found

    FPGA Implementation of Convolutional Neural Networks with Fixed-Point Calculations

    Full text link
    Neural network-based methods for image processing are becoming widely used in practical applications. Modern neural networks are computationally expensive and require specialized hardware, such as graphics processing units. Since such hardware is not always available in real life applications, there is a compelling need for the design of neural networks for mobile devices. Mobile neural networks typically have reduced number of parameters and require a relatively small number of arithmetic operations. However, they usually still are executed at the software level and use floating-point calculations. The use of mobile networks without further optimization may not provide sufficient performance when high processing speed is required, for example, in real-time video processing (30 frames per second). In this study, we suggest optimizations to speed up computations in order to efficiently use already trained neural networks on a mobile device. Specifically, we propose an approach for speeding up neural networks by moving computation from software to hardware and by using fixed-point calculations instead of floating-point. We propose a number of methods for neural network architecture design to improve the performance with fixed-point calculations. We also show an example of how existing datasets can be modified and adapted for the recognition task in hand. Finally, we present the design and the implementation of a floating-point gate array-based device to solve the practical problem of real-time handwritten digit classification from mobile camera video feed

    Whisker Movements Reveal Spatial Attention: A Unified Computational Model of Active Sensing Control in the Rat

    Get PDF
    Spatial attention is most often investigated in the visual modality through measurement of eye movements, with primates, including humans, a widely-studied model. Its study in laboratory rodents, such as mice and rats, requires different techniques, owing to the lack of a visual fovea and the particular ethological relevance of orienting movements of the snout and the whiskers in these animals. In recent years, several reliable relationships have been observed between environmental and behavioural variables and movements of the whiskers, but the function of these responses, as well as how they integrate, remains unclear. Here, we propose a unifying abstract model of whisker movement control that has as its key variable the region of space that is the animal's current focus of attention, and demonstrate, using computer-simulated behavioral experiments, that the model is consistent with a broad range of experimental observations. A core hypothesis is that the rat explicitly decodes the location in space of whisker contacts and that this representation is used to regulate whisker drive signals. This proposition stands in contrast to earlier proposals that the modulation of whisker movement during exploration is mediated primarily by reflex loops. We go on to argue that the superior colliculus is a candidate neural substrate for the siting of a head-centred map guiding whisker movement, in analogy to current models of visual attention. The proposed model has the potential to offer a more complete understanding of whisker control as well as to highlight the potential of the rodent and its whiskers as a tool for the study of mammalian attention

    Ozonation of Decalin as a Model Saturated Cyclic Molecule: A Spectroscopic Study

    No full text
    Ozonolysis is used for oxidation of a model cyclic molecule-decalin, which may be considered as an analog of saturated cyclic molecules present in heavy oil. The conversion of decalin exceeds 50% with the highest yield of formation of acids about 15–17%. Carboxylic acids, ketones/aldehydes, and alcohols are produced as intermediate products. The methods of UV-visible, transmission IR, attenuated total reflection IR-spectroscopy, NMR and mass-spectrometry were used to identify reaction products and unravel a possible reaction mechanism. The key stage of the process is undoubtedly the activation of the first C-H bond and the formation of peroxide radicals

    Phase Equilibria of the In–Pd–Sn System at 500 °C and 800 °C: Experimental Study and CALPHAD Modeling

    No full text
    Phase equilibria in the In–Pd–Sn system were investigated by a combination of key experiments and thermodynamic modeling. Partial isothermal sections at 500 °C and 800 °C of the In–Pd–Sn system for Pd contents above 66 at.% have been plotted experimentally using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDX) and X-ray diffraction (XRD). The solubility of the third component in binary compounds InPd3 and Pd3Sn was determined. The new ternary compound τ1 was found in Pd contents ranging from 20 to 25 at.% and at Sn contents varying from 5 to approximately 17 at.% Sn. This compound crystallizes in an Al3Ti-type tetragonal structure. Isostructural InPd2 and Pd2Sn phases from the In–Pd and Pd–Sn binary compositions form a continuous phase field in the ternary system at both temperatures. The temperatures of the solidus, liquidus, and phase transitions of the alloys along the Pd–In50Sn50 line were measured using DTA/DSC. Thermodynamic calculation of the In–Pd–Sn ternary system is performed using the CALPHAD method using the Thermo-CalcÂź software. The thermodynamic properties of the disordered fcc and liquid phases were described by the Redlich–Kister–Muggianu model. To describe intermetallic phases, namely, InPd3, Pd3Sn, τ1 and Pd2(InxSn1−x), a two-sublattice models was used. Thermodynamic description of the In–Pd–Sn system obtained in this study is in good agreement both with our results and the published experimental dat

    Chemical Microscopy

    No full text

    International Arctic Systems for Observing the Atmosphere: An International Polar Year Legacy Consortium

    No full text
    corecore